آمار پارامتریک که در خلال جنگ جهانی دوم شکل گرفت در برابر آمار ناپارامتریک قرار می گیرد.از تقسیم بندی­های رایج آمار، تقسیم بندی آن به آمار پارامتریک و ناپارامتریک است.

به ساده‌ترین بیان باید گفت که برای سنجش فرضیه­ هایی که متغیر آن کمی­ اند، از آمار پارامتریک استفاده می‌شود. متغیرهای کمی به علت کمی بودن و واحد پذیر بودن از این ویژگی برخوردارند که آنها را میانگین‌پذیر و انحراف معیار­پذیر می‌­کنند و به دلیل همین ویژگی معمولا برای استفاده از آزمون های پارامتریک، پیش فرض هایی لازم است که از جمله،‌ نرمال بودن توزیع جامعه است زیرا در حالتی که توزیع جامعه نرمال نباشد، میانگین و انحراف معیار، نمایی واقعی از داده ها را به تصویر نمی‌کشانند.

برای آزمون متغیرهای کیفی و رتبه ای از آمار ناپارامتریک استفاده می‌شود. این آزمونها که از آنها با عنوان آزمونهای بدون پیش فرض نیز یاد می‌شود به هیچ پیش فرض خاصی نیاز ندارد.آزمون های ناپارامتریک مشروط به مفروضات آمار کلاسیک نیستند و کاربرد اصلی آنها در بررسی جوامع آماری غیر نرمال ، جوامع با داده های کیفی و نمونه های کوچک آماری می باشد

درخصوص تبدیل متغیرها باید یادآور شد که می‌توان متغیرهای کمی را به متغیرهای کیفی تبدیل کرد و آنها را با آزمون­های ناپارامتریک مورد ارزیابی قرار داد ولی عکس این عمل امکانپذیر نیست.

شایان ذکر است که سطح دقت درآزمونهای آماری پارامتریک از آزمونهای آماری ناپارامتریک بیشتر است و معمولا پیشنهاد می­شود که در صورتی که استفاده از آزمونهای پارامتریک امکان پذیر باشد از آزمونهای ناپارامتریک استفاده نشود، باید توجه داشت که بیشتر متغیرهای علوم رفتاری به کمک آزمونهای ناپارامتریک مورد قضاوت قرار می‌‌گیرند.

همانطورکه می­دانید متغیر تصادفی ممکن است به یکی از چهار مقیاس اندازه­ گیری از قبیل : اسمی، ترتیبی، فاصله­ای و نسبتی تعلق گیرد. یک روش آماری را وقتی ناپارامتری گویند که حداقل یکی از شرایط زیر را وجود داشته باشد:

1-   مناسب داده ­هایی باشد که دارای مقیاس اسمی هستند.

2-   مناسب داده­ هایی باشد که دارای مقیاس ترتیبی هستند.

3-   مناسب داده­ هایی است که دارای مقیاس فاصله­ای نسبتی هستند، اما تابع توزیع جمعیت متغیر تصادفی که از آن داده­ها بدست آمده­اند مشخص نباشد.

مزایای استفاده از روش­های ناپارامتری:

1-   محاسبه روشهای غیر پارامتری معمولا آسان است.

2-   روشهای ناپارامتری را می­توان در مورد داده ­هایی بکار برد که روشهای پارامتری را نمی توان درباره آنها اعمال کرد. این وضعیت در مواردی است که مقیاس اندازه­ گیری داده ­ها اسمی یا ترتیبی باشد.

3-   در روشهای ناپارامتری لازم نیست که فرض کنیم متغیر تصادفی جمعیت  دارای توزیع احتمال خاصی است. این روشها بر مبنای توزیع نمونه­ گیری هستند، امادر شکل توزیع نمونه­ گیری لازم نیست که شکل خاصی  را برای توزیع احتمال جمعیت فرض کنیم.

4-   اگر یک روش غیر پارامتری را بتوان در مورد یک مقیاس اندازه ­گیری ضعیف بکار برد در آن صورت می­توان آن را در مورد مقیاسهای قویتر نیز بکار برد.


مشخصات

  • جهت مشاهده منبع اصلی این مطلب کلیک کنید
  • کلمات کلیدی منبع : ناپارامتریک ,آمار ,توزیع ,مقیاس ,استفاده ,پارامتریک ,آمار پارامتریک ,متغیر تصادفی ,دارای مقیاس ,مناسب داده­ ,داده­ هایی
  • در صورتی که این صفحه دارای محتوای مجرمانه است یا درخواست حذف آن را دارید لطفا گزارش دهید.

تبلیغات

محل تبلیغات شما

آخرین مطالب این وبلاگ

محل تبلیغات شما محل تبلیغات شما

آخرین وبلاگ ها

برترین جستجو ها

آخرین جستجو ها

Russell طراوت معرفی سینماهای تبریز Renee صوت الجواد مقالات برگزیده طراحی سایت در مشهد مارکتینگ و فروش سود پرک | فروش سود پرک | قیمت سود پرک | سودپرک 98 Ricardo